- Span & Linear Dependence
- Norm
- Eigendecomposition (Spectral decomposition)
- Singularity & Positive Definiteness
- SVD & Pseudoinverse
- Trace & Determinant
- Random Variables & Probability Distribution
- Multivariate & Derived Variables
- Bayes Rules & Statistics
- PCA
- Technical Details of Random Variables
- Common Probability Distributions
- Common Parametrizing Functions
- Information Theory
- KL Divergence
- Decision Trees & Random Forests
- Numerical Computation
- Optimization Problems
- Gradient Descent
- Newton's Method
- Optimization in ML
- Constrained Optimization
- Linear & Polynomial Regression
- Generalizability & Regularization
- Duality
- Learning Theory
- Point Estimation: Bias & Variance
- Decomposing Generalization Error
- Regularization
- Probabilistic Models
- Linear Regression
- Logistic Regression
- MAP Estimation
- Bayesian Estimation