Using word embeddings
Transfer learning and word embeddings
- Learn word embeddings from large text corpus, or download pre-trained embedding model.
- Transfer embedding to new task with smaller training set.
- (Optional) Continue to finetune the word embeddings with new data (only if new data is large).
Properties of word embeddings
問題:cosine similarity = -1 代表什麼???? 好像不代表什麼
Embedding Matrix
Learning word embeddings
if really want to learn a language model, it's natural to use the last few words as a context.
if goal is to learn a word embedding, all of these kind of methods works well.
Word2Vec
兩個版本的Word2Vec
- Skip-gram
- CBOW
Negative Sampling
因為上述的Word2Vec要訓練10000維的 softmax classifier 太耗時了,因此另一個較簡單且有效的作法是 Negative sampling,簡言之,轉換成10000個簡單的binary classifier,並且每次訓練並不會迭代所有classifier,而是訓練其中的幾個classifier。(問:可以視為一種 dropout?)
GloVe word vectors
????
Sentiment Classification
Debiasing word embeddings
Steps to debiasing word embeddings 以 性別偏見為例,
找出bias的方向,例如
- ... 然後做平均
將不該有偏見的詞 project 到 non-bias 的方向上,例如
- doctor
- nurse
- engineer
將 該有偏見的詞對 調整vector,使詞對到 non-bias方向的距離相等,例如
- grandmother, grandfather
- son, daughter
- brother, sister ...